199 research outputs found

    Treatment with eldecalcitol positively affects mineralization, microdamage, and collagen crosslinks in primate bone

    Get PDF
    Eldecalcitol (ELD), an active form of vitamin D analog approved for the treatment of osteoporosis in Japan, increases lumbar spine bone mineral density (BMD), suppresses bone turnover markers, and reduces fracture risk in patients with osteoporosis. We have previously reported that treatment with ELD for 6months improved the mechanical properties of the lumbar spine in ovariectomized (OVX) cynomolgus monkeys. ELD treatment increased lumbar BMD, suppressed bone turnover markers, and reduced histomorphometric parameters of both bone formation and resorption in vertebral trabecular bone. In this study, we elucidated the effects of ELD on bone quality (namely, mineralization, microarchitecture, microdamage, and bone collagen crosslinks) in OVX cynomolgus monkeys in comparison with OVX-vehicle control monkeys. Density fractionation of bone powder prepared from lumbar vertebrae revealed that ELD treatment shifted the distribution profile of bone mineralization to a higher density, and backscattered electron microscopic imaging showed improved trabecular bone connectivity in the ELD-treated groups. Higher doses of ELD more significantly reduced the amount of microdamage compared to OVX-vehicle controls. The fractionated bone powder samples were divided according to their density, and analyzed for collagen crosslinks. Enzymatic crosslinks were higher in both the high-density (≥2.0mg/mL) and low-density (<2.0mg/mL) fractions from the ELD-treated groups than in the corresponding fractions in the OVX-vehicle control groups. On the other hand, non-enzymatic crosslinks were lower in both the high- and low-density fractions. These observations indicated that ELD treatment stimulated the enzymatic reaction of collagen crosslinks and bone mineralization, but prevented non-enzymatic reaction of collagen crosslinks and accumulation of bone microdamage. Bone anti-resorptive agents such as bisphosphonates slow down bone remodeling so that bone mineralization, bone microdamage, and non-enzymatic collagen crosslinks all increase. Bone anabolic agents such as parathyroid hormone decrease bone mineralization and bone microdamage by stimulating bone remodeling. ELD did not fit into either category. Histological analysis indicated that the ELD treatment strongly suppressed bone resorption by reducing the number of osteoclasts, while also stimulating focal bone formation without prior bone resorption (bone minimodeling). These bidirectional activities of ELD may account for its unique effects on bone quality.Chugai Pharmaceutical Co., Ltd

    Living donor liver transplantation using sensitized lymphocytotoxic crossmatch positive graft

    Get PDF
    We describe a successful living donor liver transplantation (LDLT) using a lymphocytotoxic crossmatch highly positive graft. A 41-year-old woman with alcoholic liver cirrhosis was referred as a potential candidate for LDLT, and her husband was willing to donate his partial liver. As the T-lymphocytotoxic crossmatch titer was over 10,000×, the patient was first infused with rituximab for preoperative desensitization, and then five rounds of plasmapheresis were performed. After the third plasmapheresis, the lymphocytotoxic crossmatch test was negative. A left liver graft including the caudate lobe was implanted, and anti-CD25 antibody (basiliximab) was administered on postoperative days 1 and 4. The postoperative course was uneventful except for an episode of mild acute cellular rejection on postoperative day 27. Although the impact of a lymphocytotoxic crossmatch-positive liver graft on acute cellular rejection and graft survival in LDLT remains controversial, perioperative desensitization may provide benefits when using a highly sensitized liver graft

    Inter-subunit coupling enables fast CO2-fixation by reductive carboxylases

    Get PDF
    Enoyl-CoA carboxylases/reductases (ECRs) are some of the most efficient CO2-fixing enzymes described to date. However, the molecular mechanisms underlying the extraordinary catalytic activity of ECRs on the level of the protein assembly remain elusive. Here we used a combination of ambient-temperature X-ray free electron laser (XFEL) and cryogenic synchrotron experiments to study the structural organization of the ECR from Kitasatospora setae. The K. setae ECR is a homotetramer that differentiates into a pair of dimers of open- and closed-form subunits in the catalytically active state. Using molecular dynamics simulations and structure-based mutagenesis, we show that catalysis is synchronized in the K. setae ECR across the pair of dimers. This conformational coupling of catalytic domains is conferred by individual amino acids to achieve high CO2-fixation rates. Our results provide unprecedented insights into the dynamic organization and synchronized inter- and intrasubunit communications of this remarkably efficient CO2-fixing enzyme during catalysis.

    Identification and microbial production of a terpene-based advanced biofuel

    Get PDF
    Rising petroleum costs, trade imbalances and environmental concerns have stimulated efforts to advance the microbial production of fuels from lignocellulosic biomass. Here we identify a novel biosynthetic alternative to D2 diesel fuel, bisabolane, and engineer microbial platforms for the production of its immediate precursor, bisabolene. First, we identify bisabolane as an alternative to D2 diesel by measuring the fuel properties of chemically hydrogenated commercial bisabolene. Then, via a combination of enzyme screening and metabolic engineering, we obtain a more than tenfold increase in bisabolene titers in Escherichia coli to >900 mg l−1. We produce bisabolene in Saccharomyces cerevisiae (>900 mg l−1), a widely used platform for the production of ethanol. Finally, we chemically hydrogenate biosynthetic bisabolene into bisabolane. This work presents a framework for the identification of novel terpene-based advanced biofuels and the rapid engineering of microbial farnesyl diphosphate-overproducing platforms for the production of biofuels

    Atypical disengagement from faces and its modulation by the control of eye fixation in children with Autism Spectrum Disorder

    Get PDF
    By using the gap overlap task, we investigated disengagement from faces and objects in children (9–17 years old) with and without autism spectrum disorder (ASD) and its neurophysiological correlates. In typically developing (TD) children, faces elicited larger gap effect, an index of attentional engagement, and larger saccade-related event-related potentials (ERPs), compared to objects. In children with ASD, by contrast, neither gap effect nor ERPs differ between faces and objects. Follow-up experiments demonstrated that instructed fixation on the eyes induces larger gap effect for faces in children with ASD, whereas instructed fixation on the mouth can disrupt larger gap effect in TD children. These results suggest a critical role of eye fixation on attentional engagement to faces in both groups

    Emergence of terpene cyclization in Artemisia annua

    Get PDF
    The emergence of terpene cyclization was critical to the evolutionary expansion of chemical diversity yet remains unexplored. Here we report the first discovery of an epistatic network of residues that controls the onset of terpene cyclization in Artemisia annua. We begin with amorpha-4,11-diene synthase (ADS) and (E)-b-farnesene synthase (BFS), a pair of terpene synthases that produce cyclic or linear terpenes, respectively. A library of B27,000 enzymes is generated by breeding combinations of natural amino-acid substitutions from the cyclic into the linear producer. We discover one dominant mutation is sufficient to activate cyclization, and together with two additional residues comprise a network of strongly epistatic interactions that activate, suppress or reactivate cyclization. Remarkably, this epistatic network of equivalent residues also controls cyclization in a BFS homologue from Citrus junos. Fitness landscape analysis of mutational trajectories provides quantitative insights into a major epoch in specialized metabolism

    CRAGE-Duet Facilitates Modular Assembly of Biological Systems for Studying Plant-Microbe Interactions

    Get PDF
    Developing sustainable agricultural practices will require increasing our understanding of plant-microbe interactions. To study these interactions, new genetic tools for manipulating nonmodel microbes will be needed. To help meet this need, we recently reported development of chassis-independent recombinase-assisted genome engineering (CRAGE). CRAGE relies on cassette exchange between two pairs of mutually exclusive lox sites and allows direct, single-step chromosomal integration of large, complex gene constructs into diverse bacterial species. We then extended CRAGE by introducing a third mutually exclusive lox site, creating CRAGE-Duet, which allows modular integration of two constructs. CRAGE-Duet offers advantages over CRAGE, especially when a cumbersome recloning step is required to build single-integration constructs. To demonstrate the utility of CRAGE-Duet, we created a set of strains from the plant-growth-promoting rhizobacterium Pseudomonas simiae WCS417r that expressed various fluorescence marker genes. We visualized these strains simultaneously under a confocal microscope, demonstrating the usefulness of CRAGE-Duet for creating biological systems to study plant-microbe interactions

    Lactate Dehydrogenase-B Is Silenced by Promoter Methylation in a High Frequency of Human Breast Cancers

    Get PDF
    Objective: Under normoxia, non-malignant cells rely on oxidative phosphorylation for their ATP production, whereas cancer cells rely on Glycolysis; a phenomenon known as the Warburg effect. We aimed to elucidate the mechanisms contributing to the Warburg effect in human breast cancer. Experimental design: Lactate Dehydrogenase (LDH) isoenzymes were profiled using zymography. LDH-B subunit expression was assessed by reverse transcription PCR in cells, and by Immunohistochemistry in breast tissues. LDH-B promoter methylation was assessed by sequencing bisulfite modified DNA. Results: Absent or decreased expression of LDH isoenzymes 1-4, were seen in T-47D and MCF7 cells. Absence of LDH-B mRNA was seen in T-47D cells, and its expression was restored following treatment with the demethylating agent 5'Azacytadine. LDH-B promoter methylation was identified in T-47D and MCF7 cells, and in 25/ 25 cases of breast cancer tissues, but not in 5/ 5 cases of normal breast tissues. Absent immuno-expression of LDH-B protein (<10% cells stained), was seen in 23/ 26 (88%) breast cancer cases, and in 4/8 cases of adjacent ductal carcinoma in situ lesions. Exposure of breast cancer cells to hypoxia (1% O2), for 48 hours resulted in significant increases in lactate levels in both MCF7 (14.0 fold, p = 0.002), and T-47D cells (2.9 fold, p = 0.009), but not in MDA-MB-436 (-0.9 fold, p = 0.229), or MCF10AT (1.2 fold, p = 0.09) cells. Conclusions: Loss of LDH-B expression is an early and frequent event in human breast cancer occurring due to promoter methylation, and is likely to contribute to an enhanced glycolysis of cancer cells under hypoxia

    Synthetic biology: ethical ramifications 2009

    Get PDF
    During 2007 and 2008 synthetic biology moved from the manifesto stage to research programs. As of 2009, synthetic biology is ramifying; to ramify means to produce differentiated trajectories from previous determinations. From its inception, most of the players in synthetic biology agreed on the need for (a) rationalized design and construction of new biological parts, devices, and systems as well as (b) the re-design of natural biological systems for specified purposes, and that (c) the versatility of designed biological systems makes them suitable to address such challenges as renewable energy, the production of inexpensive drugs, and environmental remediation, as well as providing a catalyst for further growth of biotechnology. What is understood by these goals, however, is diverse. Those assorted understandings are currently contributing to different ramifications of synthetic biology. The Berkeley Human Practices Lab, led by Paul Rabinow, is currently devoting its efforts to documenting and analyzing these ramifications as they emerge
    corecore